Course Title:	Algebra 2A				
Grade Level(s):	$10^{\text {th }}, 11^{\text {th }}$				
Duration:	Full Year:	x	Semester:	Marking Period:	
Course Description:	This course is a college preparatory Algebra 2 course which builds upon the skills learned in college preparatory Algebra 1 . Students will begin by extending knowledge on linear functions with graphs and equations. Students will then progress into quadratic functions - graphs, writing equations, and solving equations with real and complex solutions. Students will next explore polynomial functions and equations with graphs and solving equations. Students will also expand their knowledge on exponents into rational exponents and radical expressions into inverse functions. Students will expand their knowledge of exponential functions to their inverse functions, logarithms, then to the properties of logarithms, graph of logarithms and finally solve logarithmic and exponential equations. The next function students will expand their knowledge on is rational functions by graphing rational functions, simplifying rational functions, and solving rational functions. Students will be introduced to trigonometric functions, the unit circle, and trigonometric identities. Students will build upon their knowledge of basic probability and will expand to combinations, permutations, as well as conditional probability.				
Grading Procedures:	Each semester will be a composite of quiz scores, test scores, homework, and participation reflecting a student's mastery of the areas outlined above. The student can pass the course with an overall average of 70%. The individual teacher will explain the grading system to the student.				
Primary Resources:	NJDOE HS Algebra Model Curriculum NJ Student Learning Standards Mathematics (NJSLS-M) Algebra 2 with CalcChat and CalcView Common Core, Ron Larson, and Laurie Boswell; Big Ideas Learning, LLC				

Washington Township Principles for Effective Teaching and Learning

- Implementing a standards-based curriculum
- Facilitating a learner-centered environment
- Using academic target language and providing comprehensible instruction
- Adapting and using age-appropriate authentic materials
- Providing performance-based assessment experiences
- Infusing 21st century skills for College and Career Readiness in a global society

Written:
7/30/2022
Revised:

BOE Approval:

Unit 1: Linear Functions

Unit Description:

This chapter consists of building work upon solving, graphing, and modeling linear equations and functions.

Unit Duration: 2 weeks

Desired Results

Standard(s):

A-CED.A Create equations that describe numbers or relationships.
F-IF.B Interpret functions that arise in applications in terms of the context.
F-IF.C Analyze functions using different representations.

Indicators:

A-CED.A. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales
A-CED.A. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
F-IF.B. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes
F-IF.C. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

Understandings:

Students will understand that...

- Characteristics of linear functions can be identified from a functions graph and equation.
- There is a precise order to solving multi-step equations
- Properties of real numbers, properties of

Essential Questions:

- What are the characteristics of a linear function?
- How can you solve one variable equations using inverse operations?
- How can you analyze, model, and solve mathematical situations using algebraic equations?
equality, and inverse operations can be used to obtain a solution to a linear equation and model real-world situations.
- Variables and operations can be used to represent real-world relationships.

Assessment Evidence

Performance T
Formative Che
Homework
Practice Workb
Test Prep Acti
Self-Assessm
Benchmarks:

Chapter 1 Test
Performance Task: Scooter Rental Plan

Learning Plan

Learning Activities:

*Daily lessons will include some or all learning activities
Daily Warm Up/Do Now
Explore It!
Go Formative Assessments
Guided Notes
Class Discussion
Ed Puzzle Activities
Self-Assessments
Independent Practice
Homework
Exit Tickets

Unit Content:

Chapter Opener - National Geographic Explorer Video (1 Day)
Preparing for Chapter 1 Activity

- Prerequisite Knowledge Skills Review

1.1 Solving Linear Equations (2 days)

- Inverse operations
- Identifying Key parts of a linear equation
- Determining if a value is a solution
1.2 Graphing Linear Functions (1 day)
- Identifying key parts of a function/graph
- Graphing linear equations
- Transforming linear equations

1.3 Modeling with Linear Functions (2 Days)

- Writing linear equations given a point and a slope, two points, from a graph
- Find line of best fit/linear regression

Chapter Review (1 Day)
Chapter Test (1 Day)

Resources:

"Laurie's Notes" per chapter throughout TE
Everyday Connection Videos via QR-Codes
Dynamic Classroom with interactive content from Dynamic Student Edition for Explore It! And Performance Tasks
Dynamic Assessment System with digital assessment and reporting system with digital practice and assessments.

Advanced Learners	- Invite students to explore different points of view on a topic of study and compare the two. - Assign a leadership role in classroom learning - Determine where student's interests lie and capitalize on their inquisitiveness. - Expose students to a selection and use of specialized resources
Struggling Learners	- Be flexible with time frames and deadlines - Create planned opportunities for interaction between individuals in the classroom: cooperative and collaborative learning, pair and share with peers - Group students - Intentional scheduling/grouping with student/teacher of alternative background - Provide support as at-risk students move through all levels of knowledge acquisition - Tap prior knowledge
English Language Learners	- Accommodate with completed study guides to assist with preparation on tests - Allow students to give responses in a form (oral or written) that's easier for him/her - Be flexible with time frames, deadlines, or modify assessments - Create planned opportunities for interaction between individuals in the classroom: skits, cooperative and collaborative learning, student generated stories based on personal experience Establish a framework allowing ELL students to understand and assimilate new ideas and information - Focus on domain specific vocabulary and keywords - Give alternate or paper copies to accommodate electronic assignments. - Have another student share class notes with the ELL student. - Intentional scheduling/grouping with student/teacher of language if possible - Mark texts with a highlighter. - Take more time to complete a task, project, or test. - Use manipulatives, graphic organizer, and real objects when possible - Use visual presentations/verbal materials (ex: word webs and visual organizers).
Special Needs Learners	- Accommodate with completed study guides to assist with preparation on tests. - Allow more time to complete task, project, or test - Allow students to give responses in a form (oral or written) that's easier for him - Be flexible with time frames, deadlines, or modify assessments - Give alternate or paper copies to replace electronic assignments - Have another student share class notes with the special needs learner. - Higher level reasoning and questioning would have less weight than other assignments. - Receive study skill instructions. - Work with fewer items per page or line and/or materials in a larger print
Learners with a 504	Refer to page four in the Parent and Educator Resource Guide to Section 504 to assist in the development of appropriate plans.

Interdisciplinary Connections

Indicators:

ELA 9-12
RST.9-10.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
RST.9-10.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
RST.11-12.1. Accurately cite strong and thorough evidence from the text to support analysis of science and technical texts, attending to precise details for explanations or descriptions.
RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
RST.11-12.10. By the end of grade 12, read and comprehend science/technical texts in the grades 11-CCR text complexity band independently and proficiently.

Computer and Design Thinking

8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.
8.1.8.DA.5: Test, analyze, and refine computational models.

Technology Education

9.3.ST.1: Use technology to acquire, manipulate, analyze, and report data.
9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.
9.4.12.0.17: Employ critical thinking skills (e.g., analyze, synthesize, and evaluate) independently and in teams to solve problems and make decisions.

Life Literacies \& Key Skills

9.4.12.CI.2: Identify career pathways that highlight personal talents, skills, and abilities (e.g., 1.4.12prof.CR2b, 2.2.12.LF.8).
9.4.12.CT.2: Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a).
9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions (e.g., S-ID.B.6a., 8.1.12.DA.5, 7.1.IH.IPRET.8)

Integration of $21^{\text {st }}$ Century Skills

Indicators:

From the Partnership for 21st Century Skills (P21), the deeper learning competencies and skills for 21st century learning in this unit include collaboration and creativity.

Unit 2: Quadratic Functions

Unit Description:

This chapter is about the understanding of the characteristics of quadratic functions and writing equations of parabolas. Modeling with quadratic functions and graphing transformations of quadratic functions is also included in this chapter.

Unit Duration: 3 weeks

Desired Results

Standard(s):
A-CED.A Create equations that describe numbers or relationships.
F-IF.B Interpret functions that arise in applications in terms of the context.
F-IF.C Analyze functions using different representations.
F-BF.B Build new functions from existing functions.

Indicators:

A-CED.A. 2 Create equation in two or more variables to represent relationships between quantities; graph equation on coordinate axes with labels and scales.
F-IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationships.
F-IF.B. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
F-IF.C.7c Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
F-IF.C. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
F-BF.B. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expression for them.

Understandings:

Students will understand that...

- Quadratic functions can be transformed by using transformations.
- Quadratic functions can be graphed by using transformations.
- Quadratic functions can be written that represent transformations of the parent function.
- Properties of parabolas can be used to graph quadratic function.
- Characteristics of quadratic functions can be found from graphs of quadratics as well as equations.
- Characteristics of quadratic functions can be used to solve real-life problems.
- Equations of quadratic functions can be written using vertices, points, and x -

Essential Questions:

- How do the constants a, h and k affect the graph of the quadratic function $g(x)=a(x-h)^{2}+k$?
- What type of symmetry does the graph of $g(x)=a(x-h)^{2}+k$ have and how can you describe this symmetry?
- How can you use a quadratic function to model a real-life situation
intercepts.
- Equations of quadratic functions can be written to model data sets.
- Technology can be used to find a quadratic model for a set of data.

Assessment Evidence

Performance Tasks:

Mid-Chapter Quiz
Formative Checks
Homework
Practice Workbook
Test Prep Activities
Self-Assessments

Other Evidence:

Dynamic Assessment System

- Section review and refresh
- Point-of-use remediation
- Reports

Benchmarks:

Chapter 2 Test
Performance Task: Stargazing

Learning Plan

Learning Activities:

*Daily lessons will include some or all learning activities
Daily Warm Up/Do Now
Explore It!
Go Formative Assessments
Guided Notes
Class Discussion
Ed Puzzle Activities
Self-Assessments
Independent Practice
Homework
Exit Tickets

Unit Content:

Chapter Opener - National Geographic Explorer Video (1 Day)
Preparing for Chapter 2 Activity

- Prerequisite Knowledge Skills Review
2.1 Transformations of Quadratic Functions (2 Days)
- Describe transformations on quadratics
- Graph using transformations on quadratics
- Write function rules using transformations on quadratics

2.2 Characteristics of Quadratic Functions (3-4 Days)

- Find parts of a parabola and graph in standard form
- Find parts of a parabola and graph in vertex form
- Find parts of a parabola and graph in intercept form

Midchapter Quiz (1 day)

2.4 Modeling with Quadratic Functions (2-3 Days)

- Write an equation of a quadratic by using the vertex and a point
- Write an equation of a quadratic by using a point and x intercepts
- Find a quadratic model by using differences and quadratic regression

Chapter Review (1 Day)
Test (1 Day)

Resources:

"Laurie's Notes" per chapter throughout TE
Everyday Connection Videos via QR-Codes
Dynamic Classroom with interactive content from Dynamic Student Edition for Explore It! And Performance Tasks Dynamic Assessment System with digital assessment and reporting system with digital practice and assessments.

Advanced Learners	- Invite students to explore different points of view on a topic of study and compare the two. - Assign a leadership role in classroom learning - Determine where student's interests lie and capitalize on their inquisitiveness. - Expose students to a selection and use of specialized resources
Struggling Learners	- Be flexible with time frames and deadlines - Create planned opportunities for interaction between individuals in the classroom: cooperative and collaborative learning, pair and share with peers - Group students - Intentional scheduling/grouping with student/teacher of alternative background - Provide support as at-risk students move through all levels of knowledge acquisition - Tap prior knowledge
English Language Learners	- Accommodate with completed study guides to assist with preparation on tests - Allow students to give responses in a form (oral or written) that's easier for him/her - Be flexible with time frames, deadlines, or modify assessments - Create planned opportunities for interaction between individuals in the classroom: skits, cooperative and collaborative learning, student generated stories based on personal experience Establish a framework allowing ELL students to understand and assimilate new ideas and information - Focus on domain specific vocabulary and keywords - Give alternate or paper copies to accommodate electronic assignments. - Have another student share class notes with the ELL student. - Intentional scheduling/grouping with student/teacher of language if possible - Mark texts with a highlighter. - Take more time to complete a task, project, or test. - Use manipulatives, graphic organizer, and real objects when possible - Use visual presentations/verbal materials (ex: word webs and visual organizers).
Special Needs Learners	- Accommodate with completed study guides to assist with preparation on tests. - Allow more time to complete task, project, or test - Allow students to give responses in a form (oral or written) that's easier for him - Be flexible with time frames, deadlines, or modify assessments - Give alternate or paper copies to replace electronic assignments - Have another student share class notes with the special needs learner. - Higher level reasoning and questioning would have less weight than other assignments. - Receive study skill instructions. - Work with fewer items per page or line and/or materials in a larger print
Learners with a 504	Refer to page four in the Parent and Educator Resource Guide to Section 504 to assist in the development of appropriate plans.

Interdisciplinary Connections

Indicators:

ELA 9-12
RST.9-10.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
RST.9-10.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
RST.11-12.1. Accurately cite strong and thorough evidence from the text to support analysis of science and technical texts, attending to precise details for explanations or descriptions.
RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
RST.11-12.10. By the end of grade 12, read and comprehend science/technical texts in the grades 11-CCR text complexity band independently and proficiently.

Computer and Design Thinking

8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.
8.1.8.DA.5: Test, analyze, and refine computational models.

Technology Education

9.3.ST.1: Use technology to acquire, manipulate, analyze, and report data.
9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.
9.4.12.0.17: Employ critical thinking skills (e.g., analyze, synthesize, and evaluate) independently and in teams to solve problems and make decisions.

Life Literacies \& Key Skills

9.4.12.CI.2: Identify career pathways that highlight personal talents, skills, and abilities (e.g., 1.4.12prof.CR2b, 2.2.12.LF.8).
9.4.12.CT.2: Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a).
9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions (e.g., S-ID.B.6a., 8.1.12.DA.5, 7.1.IH.IPRET.8)

Integration of 21 ${ }^{\text {st }}$ Century Skills

Indicators:
From the Partnership for 21st Century Skills (P21), the deeper learning competencies and skills for 21st century learning in this unit include collaboration, creativity, and critical thinking.

Unit 3: Quadratic Equations and Complex Numbers

Unit Description:

This chapter contains solving quadratic equations and inequalities, which may include imaginary solutions. Complex numbers are introduced after a review of methods used in Algebra 1 to solve quadratic equations with real solutions.

Unit Duration: 4-5 weeks

Desired Results

Standard(s):

N-CN.A Perform arithmetic operations with complex numbers.
N-CN.C Use complex numbers in polynomial identities and equations.
F-IF.C Analyze functions using different representations.

Indicators:

N-CN.A. 1 Know there is a complex number i such that $\mathrm{i}^{2}=-1$, and every complex number has the from a + bi with a and b real.
N-CN.A. 2 Use the relation $\mathrm{i}^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
N-CN.C. 7 Solve quadratic equations with real coefficients that have complex solutions.
F-IF.C. 8 Write a function defined by expression in different but equivalent forms to reveal and explain different properties of the function.

Understandings:

Students will understand that...

- Quadratic equations can have real and complex solutions which can be found graphically and algebraically.
- Properties of addition, subtraction, and multiplication be used to simplify expressions with imaginary and complex numbers.
- Quadratic equations can be solved by inspection taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation.
- Similar to linear systems, nonlinear systems of equations can be solved by graphing, substitution, and/or elimination.
- Quadratic inequalities can be solved graphically and algebraically.

Assessment Evidence

Performance Tasks:

Mid-Chapter Quiz
Formative Checks
Homework
Practice Workbook
Test Prep Activities
Self-Assessments

Essential Questions:

- How can you use the graph of a quadratic equation to determine the number of real solutions of the equation?
- What are the subsets of the set of complex numbers?
- How can you complete the square for a quadratic expression?
- How can you derive a general formula for solving a quadratic equation?
- How can you solve a nonlinear system of equations?
- How can you solve a quadratic inequality?

and algebraically.
Performance Tasks:
Mid-Chapter Quiz
Formative Checks
Homework
Practice Workbook
Test Prep Activities
Self-Assessments

Other Evidence:

Dynamic Assessment System

- Section review and refresh
- Point-of-use remediation
- Reports

Benchmarks:

Chapter 3 Test
Performance Task: Radioactive!

Learning Plan

Learning Activities:

*Daily lessons will include some or all learning activities
Daily Warm Up/Do Now
Explore It!
Go Formative Assessments
Guided Notes
Class Discussion
Ed Puzzle Activities
Self-Assessments
Independent Practice
Homework
Exit Tickets

Unit Content:

Chapter Opener - National Geographic Explorer Video (1 Day)
Preparing for Chapter 3: Factoring Mini-Unit (4 days)

- Monomial
- Trinomial without lead coefficient
- Trinomial with lead coefficient
- Difference of Squares
- Grouping

Factor Quiz (1 day)

3.1 Solving Quadratic Equations (3-4 Days)

- Solve quadratic equations by graphing
- Solve quadratic equations algebraically
- Use quadratic equations to solve real-life problems

3.2 Complex Numbers (2 Days)

- Define the imaginary unit i and use it to rewrite the square root of a negative number
- Add, subtract, and multiply complex numbers
- Find complex solutions of quadratic equations and complex zeros of quadratic functions.

Mid-Chapter Quiz (1 day)

3.3 Completing the Square (3 Days)

- Solve quadratic equations by using square roots.
- Solve quadratic equations by completing the square.
- Apply completing the square to write quadratic functions in vertex form.

3.4 Using the Quadratic Formula (2-3 Days)

- Solve quadratic equations using the Quadratic Formula.
- Find and interpret the discriminant of an equation.
- Write quadratic equations with different numbers of solutions using the discriminant.

Chapter Review (1 Day)
Test (1 Day)

Resources:

"Laurie's Notes" per chapter throughout TE
Everyday Connection Videos via QR-Codes
Dynamic Classroom with interactive content from Dynamic Student Edition for Explore It! And Performance Tasks
Dynamic Assessment System with digital assessment and reporting system with digital practice and assessments.

Advanced Learners	- Invite students to explore different points of view on a topic of study and compare the two. - Assign a leadership role in classroom learning - Determine where student's interests lie and capitalize on their inquisitiveness. - Expose students to a selection and use of specialized resources
Struggling Learners	- Be flexible with time frames and deadlines - Create planned opportunities for interaction between individuals in the classroom: cooperative and collaborative learning, pair and share with peers - Group students - Intentional scheduling/grouping with student/teacher of alternative background - Provide support as at-risk students move through all levels of knowledge acquisition - Tap prior knowledge
English Language Learners	- Accommodate with completed study guides to assist with preparation on tests - Allow students to give responses in a form (oral or written) that's easier for him/her - Be flexible with time frames, deadlines, or modify assessments - Create planned opportunities for interaction between individuals in the classroom: skits, cooperative and collaborative learning, student generated stories based on personal experience Establish a framework allowing ELL students to understand and assimilate new ideas and information - Focus on domain specific vocabulary and keywords - Give alternate or paper copies to accommodate electronic assignments. - Have another student share class notes with the ELL student. - Intentional scheduling/grouping with student/teacher of language if possible - Mark texts with a highlighter. - Take more time to complete a task, project, or test. - Use manipulatives, graphic organizer, and real objects when possible - Use visual presentations/verbal materials (ex: word webs and visual organizers).
Special Needs Learners	- Accommodate with completed study guides to assist with preparation on tests. - Allow more time to complete task, project, or test - Allow students to give responses in a form (oral or written) that's easier for him - Be flexible with time frames, deadlines, or modify assessments - Give alternate or paper copies to replace electronic assignments - Have another student share class notes with the special needs learner. - Higher level reasoning and questioning would have less weight than other assignments. - Receive study skill instructions. - Work with fewer items per page or line and/or materials in a larger print
Learners with a 504	Refer to page four in the Parent and Educator Resource Guide to Section 504 to assist in the development of appropriate plans.

Interdisciplinary Connections

Indicators:

ELA 9-12
RST.9-10.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
RST.9-10.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
RST.11-12.1. Accurately cite strong and thorough evidence from the text to support analysis of science and technical texts, attending to precise details for explanations or descriptions.
RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
RST.11-12.10. By the end of grade 12, read and comprehend science/technical texts in the grades 11-CCR text complexity band independently and proficiently.

Computer and Design Thinking

8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.
8.1.8.DA.5: Test, analyze, and refine computational models.

Technology Education

9.3.ST.1: Use technology to acquire, manipulate, analyze, and report data.
9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.
9.4.12.0.17: Employ critical thinking skills (e.g., analyze, synthesize, and evaluate) independently and in teams to solve problems and make decisions.

Life Literacies \& Key Skills

9.4.12.CI.2: Identify career pathways that highlight personal talents, skills, and abilities (e.g., 1.4.12prof.CR2b, 2.2.12.LF.8).
9.4.12.CT.2: Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a).
9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions (e.g., S-ID.B.6a., 8.1.12.DA.5, 7.1.IH.IPRET.8)

Integration of 21 ${ }^{\text {st }}$ Century Skills

Indicators:
From the Partnership for 21st Century Skills (P21), the deeper learning competencies and skill for 21st century learning in this unit includes critical thinking.

Unit 4: Quadratic Equations and Complex Numbers

Unit Description:

This chapter extends students' knowledge of linear and quadratic functions to other polynomial functions. Students will graph polynomial functions and write and solve polynomial equations.

Unit Duration: 5 weeks

Desired Results

Standard(s):

N-CN.C Use complex numbers in polynomial identities and equations.
A-SSE.A Interpret structure of expressions
A-APR.A Perform arithmetic operations on polynomials
A-APR.B Understand the relationship between zeros and factors of polynomials
A-APR.C Use polynomial identities to solve problems
A.APR.D Rewrite rational expressions

A-CED.A Create equations that describe numbers or relationships
F-IF.B Interpret functions that arise in applications in terms of the context
F-IF.C Analyze functions using different representations
F-BF.B Build new functions from existing functions

Indicators:

N-CN.C. 8 Extend polynomial identities to the complex numbers
N-CN.C. 9 Know the Fundamental Theorem of Algebra, show that it is true for quadratic polynomials
A-SSE.A. 2 Use the structure of an expression to identify ways to rewrite it.
A-APR.A. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
A-APR.B. 2 Know and apply the Remainder Theorem, for a polynomial $p(x)$ and a number a the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
A-APR.B. 3 Identify zeros of polynomials when suitable factorizations are available and use the zeros to construct a rough graph of the function defined by the polynomial.
A-APR.C. 4 Prove polynomial identities and use them to describe numerical relationships.
A-APR.C. 5 Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.
A-APR.D. 6 Rewrite simple rational expressions in different form, write $a(x) / b(x)$ in the form of $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with degrees of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or , for the more complicated algebra system.
A-CED.A. 2 Create equations in two or more variables to represent relationships between quantities, graph equations on coordinate axes with labels and scales.
F-IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs, and tables in terms of the quantities, and sketch graphs, showing key features given a verbal description of the relationship.
F-IF.C.7c Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
F-BF.B. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and
illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expression for them.

Understandings:

Students will understand that...

- Polynomials can be classified be degree, leading coefficient, and end behavior.
- Binomials raised to an exponent can be expanded using special patterns, identities, and Pascal's Triangle
- Polynomials can be divided using long division, or synthetic division if the divisor is in the form x k.
- Polynomials can be factored using common monomial factors, sum/difference of cubes, quadratic factoring strategies, and the factor theorem.
- Using the rational root theorem, possible solutions for a polynomial can be determined, and then tested using synthetic division to find the actual solutions.
- If a polynomial a degree n where $n>0$, then the equation $f(x)=0$ has n number of solutions. Solutions can be repeated.
- Descartes's rule of signs can determine the number of positive and negative real zeros.
- Polynomial functions can be transformed in the same way linear, absolute-value, and quadratic functions are transformed.
- Every polynomial function of degree n has at most $n-1$ turning points.
- Real-life data can be modeled as a polynomial using finite differences and/or the regression feature via technology.

Essential Questions:

- What are some common characteristics of the graphs of cubic and quartic polynomial functions?
- How can you cube a binomial?
- How can you use the factors of a cubic polynomial to solve a division problem involving the polynomial?
- How can you factor a polynomial?
- How can you determine whether a polynomial equation has a repeated solution?
- How can you determine whether a polynomial equation has imaginary solutions?
- How can you transform the graph of a polynomial function?
- How many turning points can the graph of polynomial function have?
- How can you find a polynomial model for a real-life data?

Assessment Evidence

Performance Tasks:
Mid-Chapter Quiz
Formative Checks
Homework
Practice Workbook
Test Prep Activities
Self-Assessments

Other Evidence:

Dynamic Assessment System

- Section review and refresh
- Point-of-use remediation
- Reports

Benchmarks:

Chapter 4 Test
Performance Task: Thrown to the Wolves

Learning Activities:

*Daily lessons will include some or all learning activities
Daily Warm Up/Do Now
Explore It!
Go Formative Assessments
Guided Notes
Class Discussion
Ed Puzzle Activities
Self-Assessments
Independent Practice
Homework
Exit Tickets
Unit Content:
Chapter Opener - National Geographic Explorer Video (1 Day)
Preparing for Chapter 4 Activity

- Prerequisite Knowledge Skills Review
4.1 Graphing Polynomial Functions (2 Days)
- Identify and evaluate polynomial functions.
- Graph polynomial functions.
- Describe end behavior of polynomial functions.

4.2 Adding, Subtracting, and Multiplying Polynomials (2 Days)

- Add and subtract polynomials
- Multiply polynomials and use special product patterns.
- Use Pascal's Triangle to expand binomials. (Optional)

4.3 Dividing Polynomials (3 Days)

- Use long division to divide polynomials by other polynomials.
- Divide polynomials by binomials of the form $x-k$ using synthetic division.
- Explain the Remainder Theorem.

Mid-Chapter Quiz (1 day)

4.4 Factoring Polynomials (2 Days)

- Find common monomial factors of polynomials.
- Factor polynomials.
- Use the Factor Theorem.

4.5 Solving Polynomial Equations (3 Days)

- Explain how solutions of equations and zeros of functions are related.
- Solve polynomial equations.
- Write a polynomial function when given information about its zeros.
Chapter Review (1 Day)
Test (1 Day)

4.6 The Fundamental Theorem of Algebra (2 Days)

- Identify the degree of a polynomial.
- Explain the Fundamental Theorem of Algebra.
- Find all the zeros of a polynomial function.

4.7 Transformations of Polynomial Functions (Optional)

- Describe transformations of polynomial functions
- Graph transformations of polynomial functions.
- Write functions that represent transformations of polynomial functions.

4.8 Analyzing Graphs of Polynomial Functions (2 Days)

- Identify a turning point of a polynomial function.
- Analyze real zeros and turning points numerically.
- Explain the relationship among the degree of a polynomial function, real zeros, and turning points.

4.9 Modeling with Polynomial Functions (1 Day)

- Write polynomial function given a graph or a set of points.
- Write a polynomial function using finite differences.
- Use technology to find a polynomial model for a set of data.

Second half of chapter quiz (1 day)

Resources:

"Laurie's Notes" per chapter throughout TE
Everyday Connection Videos via QR-Codes
Dynamic Classroom with interactive content from Dynamic Student Edition for Explore It! And Performance Tasks
Dynamic Assessment System with digital assessment and reporting system with digital practice and assessments.

Advanced Learners	- Invite students to explore different points of view on a topic of study and compare the two. - Assign a leadership role in classroom learning - Determine where student's interests lie and capitalize on their inquisitiveness. - Expose students to a selection and use of specialized resources
Struggling Learners	- Be flexible with time frames and deadlines - Create planned opportunities for interaction between individuals in the classroom: cooperative and collaborative learning, pair and share with peers - Group students - Intentional scheduling/grouping with student/teacher of alternative background - Provide support as at-risk students move through all levels of knowledge acquisition - Tap prior knowledge
English Language Learners	- Accommodate with completed study guides to assist with preparation on tests - Allow students to give responses in a form (oral or written) that's easier for him/her - Be flexible with time frames, deadlines, or modify assessments - Create planned opportunities for interaction between individuals in the classroom: skits, cooperative and collaborative learning, student generated stories based on personal experience Establish a framework allowing ELL students to understand and assimilate new ideas and information - Focus on domain specific vocabulary and keywords - Give alternate or paper copies to accommodate electronic assignments. - Have another student share class notes with the ELL student. - Intentional scheduling/grouping with student/teacher of language if possible - Mark texts with a highlighter. - Take more time to complete a task, project, or test. - Use manipulatives, graphic organizer, and real objects when possible - Use visual presentations/verbal materials (ex: word webs and visual organizers).
Special Needs Learners	- Accommodate with completed study guides to assist with preparation on tests. - Allow more time to complete task, project, or test - Allow students to give responses in a form (oral or written) that's easier for him - Be flexible with time frames, deadlines, or modify assessments - Give alternate or paper copies to replace electronic assignments - Have another student share class notes with the special needs learner. - Higher level reasoning and questioning would have less weight than other assignments. - Receive study skill instructions. - Work with fewer items per page or line and/or materials in a larger print
Learners with a 504	Refer to page four in the Parent and Educator Resource Guide to Section 504 to assist in the development of appropriate plans.

Interdisciplinary Connections

Indicators:

ELA 9-12
RST.9-10.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
RST.9-10.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
RST.11-12.1. Accurately cite strong and thorough evidence from the text to support analysis of science and technical texts, attending to precise details for explanations or descriptions.
RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
RST.11-12.10. By the end of grade 12, read and comprehend science/technical texts in the grades 11-CCR text complexity band independently and proficiently.

Computer and Design Thinking

8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.
8.1.8.DA.5: Test, analyze, and refine computational models.

Technology Education

9.3.ST.1: Use technology to acquire, manipulate, analyze, and report data.
9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.
9.4.12.0.17: Employ critical thinking skills (e.g., analyze, synthesize, and evaluate) independently and in teams to solve problems and make decisions.

Life Literacies \& Key Skills

9.4.12.CI.2: Identify career pathways that highlight personal talents, skills, and abilities (e.g., 1.4.12prof.CR2b, 2.2.12.LF.8).
9.4.12.CT.2: Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a).
9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions (e.g., S-ID.B.6a., 8.1.12.DA.5, 7.1.IH.IPRET.8)

Integration of 21 ${ }^{\text {st }}$ Century Skills

Indicators:
From the Partnership for 21st Century Skills (P21), the deeper learning competencies and skills for 21st century learning in this unit include collaboration, communication, and critical thinking.

Unit 5: Rational Exponents and Radical Functions

Unit Description:

This chapter extends students' knowledge of linear and quadratic functions to other polynomial functions. Students will graph polynomial functions and write and solve polynomial equations.

Unit Duration: 5 weeks

Desired Results

Standard(s):

N-RN.A Extend the properties of exponents to rational exponents
A-CED.A Create equations that describe numbers or relationships
A-REI.A Understand solving equations as a process of reasoning and explain the reasoning
F-IF.C Analyze functions using different representations
F-BF.A Understand the concept of a function and use function notation
F-BF.B Build new functions from existing functions

Indicators:

N-RNA. 1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integers exponents to those values, allowing for a notation for radicals in terms of rational exponents.
N-RN.A. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.
A-CED.A. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
A-REI.A. 2 Solve simple rational and radical equations in one variable and give examples showing how extraneous solutions may arise.
F-IF.C.7b Graph square root, cube root, and piecewise-defined functions, including step functions and absolute functions
F-BF.A.1b Combine standard function types using arithmetic operations.
F-BF.A.1c Compose functions
F-BF.B. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expression for them.
F-BF.B.4a Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse

Understandings:

Students will understand that..

- The denominator of a rational exponent is the index when written in radical form.
- Rewriting a radical into rational exponent form can allow the use of exponent properties when simplifying rational expressions.
- Radical functions can be graphed using the parent function and function transformations.
- Radical equations can be solved by isolating the radical and raising both sides of the equation to

Essential Questions:

- How can you use rational exponent to represent a power involving a radical?
- How can you use properties of exponent to simplify products and quotients of radicals?
- How can you identify the domain and range of a radical function?
- How can you solve a radical equation?
- How can you use the graphs of two functions to sketch the graph of an arithmetic combination of the two functions?
- How can you find the composition of two functions?
the same exponent number as the index in order to eliminate the radical.
- Polynomial operations can also be defined for functions. Technology can also be used to perform function operations, using the trace feature.
- Compositions of functions can be found by using the output of one function as the input of the other function.
- The graph of an inverse function is a reflection of the graph of the original function over the line $y=x$.

Assessment Evidence

Performance Tasks:

Mid-Chapter Quiz
Formative Checks
Homework
Practice Workbook
Test Prep Activities
Self-Assessments
Performance Tasks:
Mid-Chapter Quiz
Formative Checks
Homework
Practice Workbook
Test Prep Activities
Self-Assessments

- How can you sketch the graph of an inverse of a function?

Benchmarks:

Chapter 5 Test
Performance Task: The Sounds of Music

Learning Plan

Learning Activities:

*Daily lessons will include some or all learning activities
Daily Warm Up/Do Now
Explore It!
Go Formative Assessments
Guided Notes
Class Discussion
Ed Puzzle Activities
Self-Assessments
Independent Practice
Homework
Exit Tickets

Unit Content:

Chapter Opener - National Geographic Explorer Video (1 Day)

Preparing for Chapter 5 Activity

- Prerequisite Knowledge Skills Review

$5.1 n^{\text {th }}$ Root and Rational Exponents (3 Days)

- Explain the meaning of a rational exponent.
- Evaluate expressions with rational exponents.
- Solve equations using $n^{\text {th }}$ roots.

5.2 Properties of Rational Exponents and Radicals (4 Days)

- Simplify radical expressions with rational exponents.
- Explain when radical expressions are in simplest form.
- Simplify variable expressions containing rational exponents and radicals.

5.3 Graphing Radical Functions (3 Days)

- Graph radical functions.
- Describe transformations of radical functions.
- Write functions that represent transformations of radical functions.

Midchapter Quiz (1 day)

5.4 Solving Radical Equations (3 Days)

- Identify radical equations
- Solve radical equations
- Identify extraneous solutions of radical equations.
- Solve real-life problems involving radical equations.

5.5 Performing Function Operations (2 Days)

- Explain what it means to perform an arithmetic operation on two functions.
- Find arithmetic combinations of two functions.
- State the domain of an arithmetic combination of two functions.
- Evaluate an arithmetic combination of two functions for a given input.

5.6 Composition of Functions (2 Days)

- Evaluate a composition of functions.
- Find a composition of functions.
- State the domain of a composition of functions.

5.7 Inverse of a Function (3 Days)

- Explain what inverse functions are.
- Find inverses of linear and nonlinear functions.
- Determine whether a pair of functions are inverses.

Chapter Review (1 Day)
Test (1 Day)

Resources:

"Laurie's Notes" per chapter throughout TE
Everyday Connection Videos via QR-Codes
Dynamic Classroom with interactive content from Dynamic Student Edition for Explore It! And Performance Tasks Dynamic Assessment System with digital assessment and reporting system with digital practice and assessments.

Advanced Learners	- Invite students to explore different points of view on a topic of study and compare the two. - Assign a leadership role in classroom learning - Determine where student's interests lie and capitalize on their inquisitiveness. - Expose students to a selection and use of specialized resources
Struggling Learners	- Be flexible with time frames and deadlines - Create planned opportunities for interaction between individuals in the classroom: cooperative and collaborative learning, pair and share with peers - Group students - Intentional scheduling/grouping with student/teacher of alternative background - Provide support as at-risk students move through all levels of knowledge acquisition - Tap prior knowledge
English Language Learners	- Accommodate with completed study guides to assist with preparation on tests - Allow students to give responses in a form (oral or written) that's easier for him/her - Be flexible with time frames, deadlines, or modify assessments - Create planned opportunities for interaction between individuals in the classroom: skits, cooperative and collaborative learning, student generated stories based on personal experience Establish a framework allowing ELL students to understand and assimilate new ideas and information - Focus on domain specific vocabulary and keywords - Give alternate or paper copies to accommodate electronic assignments. - Have another student share class notes with the ELL student. - Intentional scheduling/grouping with student/teacher of language if possible - Mark texts with a highlighter. - Take more time to complete a task, project, or test. - Use manipulatives, graphic organizer, and real objects when possible - Use visual presentations/verbal materials (ex: word webs and visual organizers).
Special Needs Learners	- Accommodate with completed study guides to assist with preparation on tests. - Allow more time to complete task, project, or test - Allow students to give responses in a form (oral or written) that's easier for him - Be flexible with time frames, deadlines, or modify assessments - Give alternate or paper copies to replace electronic assignments - Have another student share class notes with the special needs learner. - Higher level reasoning and questioning would have less weight than other assignments. - Receive study skill instructions. - Work with fewer items per page or line and/or materials in a larger print
Learners with a 504	Refer to page four in the Parent and Educator Resource Guide to Section 504 to assist in the development of appropriate plans.

Interdisciplinary Connections

Indicators:

ELA 9-12
RST.9-10.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
RST.9-10.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
RST.11-12.1. Accurately cite strong and thorough evidence from the text to support analysis of science and technical texts, attending to precise details for explanations or descriptions.
RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
RST.11-12.10. By the end of grade 12, read and comprehend science/technical texts in the grades 11-CCR text complexity band independently and proficiently.

Computer and Design Thinking

8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.
8.1.8.DA.5: Test, analyze, and refine computational models.

Technology Education

9.3.ST.1: Use technology to acquire, manipulate, analyze, and report data.
9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.
9.4.12.0.17: Employ critical thinking skills (e.g., analyze, synthesize, and evaluate) independently and in teams to solve problems and make decisions.

Life Literacies \& Key Skills

9.4.12.CI.2: Identify career pathways that highlight personal talents, skills, and abilities (e.g., 1.4.12prof.CR2b, 2.2.12.LF.8).
9.4.12.CT.2: Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a).
9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions (e.g., S-ID.B.6a., 8.1.12.DA.5, 7.1.IH.IPRET.8)

Integration of 21 ${ }^{\text {st }}$ Century Skills

Indicators:
From the Partnership for 21st Century Skills (P21), the deeper learning competencies and skills for 21st century learning in this unit include collaboration, communication, and critical thinking.

Unit 6: Exponential and Logarithmic Functions

Unit Description:

This chapter extends students' knowledge of functions to exponential and logarithmic functions. Students will study the behavior, graphs, and real-life applications of exponential and logarithmic functions.

Unit Duration: 4-5 weeks

Desired Results

Standard(s):
A-SSE.A Interpret structure of expressions
A-CED.A Create equations that describe numbers or relationships
F-IF.C Analyze functions using different representations
F-BF.B Build new functions from existing functions
F-LE.A Construct and compare linear and exponential models and solve problems
Indicators:
A-SSE.A. 2 Use the structure of an expression to identify ways to rewrite it.
A-CED.A. 2 Create equation in two or more variables to represent relationships between quantities; graph equation on coordinate axes with labels and scales.
F-IF.C.7e Graph exponential and logarithmic functions, showing intercepts and end behaviors, and trigonometric functions, showing period, midline, and amplitude
F-IF.C.8b Use properties of exponents to interpret expressions for exponential functions
F-BF.B. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expression for them.
F-BF.B.4a Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse
F-BF.B. 4 For exponential models, express as a logarithm the solution to $a b^{c t}=d$ where a, c and d are numbers and the base b is 2 , 10 or e; evaluate the logarithm using technology

Understandings:

Students will understand that...

- Exponential growth models go away from the graph's asymptote, whereas exponential decay models go towards the graph's asymptote from left to right.
- The natural base e is an irrational number that represent continuous compounding of an exponential function.
- The graph of a logarithmic function is the inverse of an exponential function.
- Exponential and logarithmic functions can be transformed in the same way linear, absolutevalue, polynomial and quadratic functions are transformed.
- Due to logarithmic and exponential functions being inverses, the product, quotient, and power

Essential Questions:

- What are some of the characteristics of the graph of an exponential function?
- What is the natural base e ?
- What are some of the characteristics of the graph of a logarithmic function?
- How can you transform the graphs of exponential and logarithmic functions?
- How can you use the properties of exponents to derive properties of logarithms?
- How can you solve exponential and logarithmic equations?
- How can you recognize polynomial, exponential, and logarithmic models?
property of logarithms correspond to the exponential properties.
- When solving exponential equations, the exponents can be set equal once a common base if found. If the bases are not the same across the equation, the logarithm must be taken on each side.
- When solving logarithmic equations, each side of the equation can be exponentiated to obtain an equation with no logarithms.
- Analyzing the outputs of a functions table, scatter plots, and regression technology are methods for modeling with logarithmic and exponential functions.

Assessment Evidence

Performance Tasks:	Other Evidence: Dynamic Assessment System Mid-Chapter Quiz
Formative Checks	• Section review and refresh
Homework	• Point-of-use remediation
Practice Workbook	• Reports
Test Prep Activities	
Self-Assessments	

Benchmarks:

Chapter 6 Test
Performance Task: Carbon Dating

Learning Plan

Learning Activities:

*Daily lessons will include some or all learning activities
Daily Warm Up/Do Now

Explore It!

Go Formative Assessments
Guided Notes
Class Discussion
Ed Puzzle Activities
Self-Assessments
Independent Practice
Homework
Exit Tickets

Unit Content:

Chapter Opener - National Geographic Explorer Video (1 Day)
Preparing for Chapter 6 Activity

- Prerequisite Knowledge Skills Review

6.1 Exponential Growth and Decay Functions (2-3 Days)

- Identify and graph exponential growth and decay.
- Write exponential growth and decay functions.
- Solve real-life problems using exponential growth and decay

6.2 The Natural Base e (2 Day)

- Explain the natural base e
- Simplify natural base expressions.
- Graph natural base functions.
- Solve real-life problems using exponential growth and decay functions.
6.3 Logarithms and Logarithmic Functions (2 Day)
- Explain the meaning of a logarithm with base b.
- Evaluate logarithmic expressions.
- Graph logarithmic functions.

Midchapter Quiz/Stations (2-3 days)

6.4 Transformations of Exponential and Logarithmic Functions (Optional)

- Describe transformations of exponential and logarithmic functions.
- Graph transformations of exponential and logarithmic functions.
- Write functions that represent transformations of exponential and logarithmic functions.

6.5 Properties of Logarithms (2 Day)

- Evaluate logarithms.
- Expand or condense logarithmic expressions.
- Explain how to use the change-of-base formula.

6.6 Solving Exponential and Logarithmic Equations (3-4 Days)

- Solve exponential equations
- Solve logarithmic equations.
- Solve exponential and logarithmic inequalities.
6.7 Modeling with Exponential and Logarithmic Functions (Optional)
- Use common ration to determine whether data can be represented by an exponential function.
- Write an exponential function using two points.
- Use technology to find exponential models and logarithmic models for sets of data.

Chapter Review (1 Day)
Test (1 Day)

Resources:

"Laurie's Notes" per chapter throughout TE
Everyday Connection Videos via QR-Codes
Dynamic Classroom with interactive content from Dynamic Student Edition for Explore It! And Performance Tasks Dynamic Assessment System with digital assessment and reporting system with digital practice and assessments.

Advanced Learners	- Invite students to explore different points of view on a topic of study and compare the two. - Assign a leadership role in classroom learning - Determine where student's interests lie and capitalize on their inquisitiveness. - Expose students to a selection and use of specialized resources
Struggling Learners	- Be flexible with time frames and deadlines - Create planned opportunities for interaction between individuals in the classroom: cooperative and collaborative learning, pair and share with peers - Group students - Intentional scheduling/grouping with student/teacher of alternative background - Provide support as at-risk students move through all levels of knowledge acquisition - Tap prior knowledge
English Language Learners	- Accommodate with completed study guides to assist with preparation on tests - Allow students to give responses in a form (oral or written) that's easier for him/her - Be flexible with time frames, deadlines, or modify assessments - Create planned opportunities for interaction between individuals in the classroom: skits, cooperative and collaborative learning, student generated stories based on personal experience Establish a framework allowing ELL students to understand and assimilate new ideas and information - Focus on domain specific vocabulary and keywords - Give alternate or paper copies to accommodate electronic assignments. - Have another student share class notes with the ELL student. - Intentional scheduling/grouping with student/teacher of language if possible - Mark texts with a highlighter. - Take more time to complete a task, project, or test. - Use manipulatives, graphic organizer, and real objects when possible - Use visual presentations/verbal materials (ex: word webs and visual organizers).
Special Needs Learners	- Accommodate with completed study guides to assist with preparation on tests. - Allow more time to complete task, project, or test - Allow students to give responses in a form (oral or written) that's easier for him - Be flexible with time frames, deadlines, or modify assessments - Give alternate or paper copies to replace electronic assignments - Have another student share class notes with the special needs learner. - Higher level reasoning and questioning would have less weight than other assignments. - Receive study skill instructions. - Work with fewer items per page or line and/or materials in a larger print
Learners with a 504	Refer to page four in the Parent and Educator Resource Guide to Section 504 to assist in the development of appropriate plans.

Interdisciplinary Connections

Indicators:

ELA 9-12

RST.9-10.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
RST.9-10.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
RST.11-12.1. Accurately cite strong and thorough evidence from the text to support analysis of science and technical texts, attending to precise details for explanations or descriptions.
RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
RST.11-12.10. By the end of grade 12, read and comprehend science/technical texts in the grades 11-CCR text complexity band independently and proficiently.

Computer and Design Thinking

8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.
8.1.8.DA.5: Test, analyze, and refine computational models.

Technology Education

9.3.ST.1: Use technology to acquire, manipulate, analyze, and report data.
9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.
9.4.12.0.17: Employ critical thinking skills (e.g., analyze, synthesize, and evaluate) independently and in teams to solve problems and make decisions.

Life Literacies \& Key Skills

9.4.12.CI.2: Identify career pathways that highlight personal talents, skills, and abilities (e.g., 1.4.12prof.CR2b, 2.2.12.LF.8).
9.4.12.CT.2: Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a).
9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions (e.g., S-ID.B.6a., 8.1.12.DA.5, 7.1.IH.IPRET.8)

Financial Literacy

9.1.12.CDM.6: Compute and assess the accumulating effect of interest paid over time when using a variety of sources of credit. (e.g., student loans, credit cards, auto loans, mortgages, etc.).
9.1.12.CDM.8: Compare and compute interest and compound interest and develop an amortization table using business tools.

Integration of $21^{\text {st }}$ Century Skills

Indicators:

From the Partnership for 21st Century Skills (P21), the deeper learning competencies and skills for 21st century learning in this unit include collaboration, creativity, and critical thinking.

Unit 7: Rational Functions

Unit Description:

This chapter extends students' knowledge of functions to rational functions. Students will study the behavior, graphs, and real-life applications of rational functions.

Unit Duration: 3 weeks

Desired Results

Standard(s):
A-APR.D Rewrite rational expressions
A-REI.A Understand solving equations as a process of reasoning and explain the reasoning
F-BF.B Build new functions from existing functions

Indicators:

A-APR.D. 6 Rewrite simple rational expressions in different form, write $a(x) / b(x)$ in the form of $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with degrees of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or , for the more complicated algebra system.
A-APR.D. 7 Understand that rational expressions form a system of analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
A-REI.A. 2 Solve simple rational and radical equations in one variable and give examples showing how extraneous solutions may arise.
F-BF.B. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expression for them.

Understandings:

Students will understand that...

- The graph of the parent function $f(x)=\frac{1}{x}$ is a hyperbola which consists of two symmetrical parts called branches separated by vertical and horizontal asymptotes.
- The domain of rational expression excludes values that make the denominator zero in the given and/or simplified expressions.
- Rational equations can be solved by multiplying each side of the equation by the least common denominator; or using cross-multiplication when each side of the equation is a single rational expression.

Essential Questions:

- What are some of the characteristics of the graph of a rational function?
- How can you determine the excluded values in a product or quotient of two rational expressions?
- How can you determine the domain of the sum or difference of two rational expressions?
- How can you solve a rational equation?

Assessment Evidence

Performance Tasks:

Other Evidence:
Dynamic Assessment System

- Section review and refresh
- Point-of-use remediation
- Reports

Test Prep Activities	
Self-Assessments	

Benchmarks:

Chapter 7 Test
Performance Task: 3-D Printing

Learning Plan

Learning Activities:
*Daily lessons will include some or all learning activities
Daily Warm Up/Do Now
Explore It!
Go Formative Assessments
Guided Notes
Class Discussion
Ed Puzzle Activities
Self-Assessments
Independent Practice
Homework
Exit Tickets

Unit Content:

Chapter Opener - National Geographic Explorer Video (1 Day)
Preparing for Chapter 7 Activity

- Prerequisite Knowledge Skills Review

7.2 Graphing Rational Functions (3-4 Days)

- Graph rational functions.
- Describe transformations of rational functions.
- Explain how to find the asymptotes of a rational function from an equation.
- Write rational functions in different forms.

Quiz-Graphing Rational Functions (1 day)
7.3 Multiplying and Dividing Rational Expressions (2 Days)

- Simplify rational expressions and identify any excluded values.
- Multiply rational expressions.
- Divide rational expressions.

7.4 Adding and Subtracting Rational Expressions (2-3 Days)

- Add and subtract rational expressions with like denominators.
- Explain how to find a common denominator for rational expressions.
- Add or subtract rational expressions with unlike denominators.

7.5 Solving Rational Equations (2 Days)

- Solve rational equations by cross multiplying and by using least common denominators.
- Identify extraneous solutions of rational equations.
- Solve real-life problems using inverses of rational functions.

Chapter Review (1 Day)
Test (1 Day)

Resources:

"Laurie's Notes" per chapter throughout TE
Everyday Connection Videos via QR-Codes
Dynamic Classroom with interactive content from Dynamic Student Edition for Explore It! And Performance Tasks Dynamic Assessment System with digital assessment and reporting system with digital practice and assessments.

Advanced Learners	- Invite students to explore different points of view on a topic of study and compare the two. - Assign a leadership role in classroom learning - Determine where student's interests lie and capitalize on their inquisitiveness. - Expose students to a selection and use of specialized resources
Struggling Learners	- Be flexible with time frames and deadlines - Create planned opportunities for interaction between individuals in the classroom: cooperative and collaborative learning, pair and share with peers - Group students - Intentional scheduling/grouping with student/teacher of alternative background - Provide support as at-risk students move through all levels of knowledge acquisition - Tap prior knowledge
English Language Learners	- Accommodate with completed study guides to assist with preparation on tests - Allow students to give responses in a form (oral or written) that's easier for him/her - Be flexible with time frames, deadlines, or modify assessments - Create planned opportunities for interaction between individuals in the classroom: skits, cooperative and collaborative learning, student generated stories based on personal experience - Establish a framework allowing ELL students to understand and assimilate new ideas and information - Focus on domain specific vocabulary and keywords - Give alternate or paper copies to accommodate electronic assignments. - Have another student share class notes with the ELL student. - Intentional scheduling/grouping with student/teacher of language if possible - Mark texts with a highlighter. - Take more time to complete a task, project, or test. - Use manipulatives, graphic organizer, and real objects when possible - Use visual presentations/verbal materials (ex: word webs and visual organizers).
Special Needs Learners	- Accommodate with completed study guides to assist with preparation on tests. - Allow more time to complete task, project, or test - Allow students to give responses in a form (oral or written) that's easier for him - Be flexible with time frames, deadlines, or modify assessments - Give alternate or paper copies to replace electronic assignments - Have another student share class notes with the special needs learner. - Higher level reasoning and questioning would have less weight than other assignments. - Receive study skill instructions. - Work with fewer items per page or line and/or materials in a larger print
Learners with a 504	Refer to page four in the Parent and Educator Resource Guide to Section 504 to assist in the development of appropriate plans.

Interdisciplinary Connections

Indicators:

ELA 9-12

RST.9-10.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
RST.9-10.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
RST.11-12.1. Accurately cite strong and thorough evidence from the text to support analysis of science and technical texts, attending to precise details for explanations or descriptions.
RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
RST.11-12.10. By the end of grade 12, read and comprehend science/technical texts in the grades 11-CCR text complexity band independently and proficiently.

Computer and Design Thinking

8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.
8.1.8.DA.5: Test, analyze, and refine computational models.

Technology Education

9.3.ST.1: Use technology to acquire, manipulate, analyze, and report data.
9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.
9.4.12.0.17: Employ critical thinking skills (e.g., analyze, synthesize, and evaluate) independently and in teams to solve problems and make decisions.

Life Literacies \& Key Skills

9.4.12.CI.2: Identify career pathways that highlight personal talents, skills, and abilities (e.g., 1.4.12prof.CR2b, 2.2.12.LF.8).
9.4.12.CT.2: Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a).
9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions (e.g., S-ID.B.6a., 8.1.12.DA.5, 7.1.IH.IPRET.8)

Integration of 21 ${ }^{\text {st }}$ Century Skills

Indicators:
From the Partnership for 21st Century Skills (P21), the deeper learning competencies and skills for 21st century learning in this unit include collaboration and critical thinking.

Unit 8: Trigonometric Ratios and Functions

Unit Description:

This chapter extends students' knowledge of functions to trigonometric functions. Students will evaluate and graph trigonometric functions, model using trigonometric functions, and use trigonometry identities.
Unit Duration: 5-6 weeks

Desired Results

Standard(s):
A-CED.A Create equations that describe numbers or relationships
F-IF.C Analyze functions using different representations
F-BF.B Build new functions from existing functions
F-TF.A Extend the domain of trigonometric functions using the unit circle
F-TF.B Model periodic phenomena with trigonometric functions
F-TF.C Prove and apply trigonometric identities

Indicators:

A-CED.A. 2 Create equation in two or more variables to represent relationships between quantities; graph equation on coordinate axes with labels and scales.
F-IF.C.7e Graph exponential and logarithmic functions, showing intercepts and end behaviors, and trigonometric functions, showing period, midline, and amplitude
F-BF.B. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expression for them.
F-TF.A. 1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
F-TF.A. 2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measure of angles traversed counter-clockwise around the unit circle.
F-TF.B. 5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.
F-TF.C. 8 Prove the Pythagorean identify $\sin ^{2} \theta+\cos ^{2} \theta=1$ and use it find $\sin \theta, \cos \theta$, or $\tan \theta$ given $\sin \theta$, $\cos \Theta$, or $\tan \Theta$ and the quadrant of the angle.
F-TF.C. 9 Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.

Understandings:

Students will understand that...

- The ratios of a right triangle's side lengths (hypotenuse, opposite, and adjacent) are used to determine the six trigonometric functions.
- To convert between degree and radian measure use the fact that $\frac{\pi \text { radians }}{180^{\circ}}=1$

Essential Questions:

- How can you find a trigonometric function of the acute angle θ ?
- How can you find the measure of an angle in radians?
- How can you use the unit circle to define the trigonometric functions of any angle?
- What are the characteristics of the graphs of the sine and cosine functions?
- The values of $\sin \theta$ ad $\cos \theta$ are the y-coordinate and x-coordinate of the point where the terminal side of θ intersects the unit circle
- Sine and Cosine functions are period functions with amplitude, periods, and cycles.
- Tangent function graphs are periodic with asymptotes separating each cycle. Tangent functions do not have an amplitude
- To prove an identity, one side of the equation is manipulated using algebra and trigonometric properties to match the other side of the equation.

Assessment Evidence

Performance Tasks:
Mid-Chapter Quiz
Formative Checks
Homework
Practice Workbook
Test Prep Activities
Self-Assessments

Benchmarks:

Chapter 10 Test
Performance Task: Smooth Sailing

Learning Plan

Learning Activities:

*Daily lessons will include some or all learning activities
Daily Warm Up/Do Now
Explore It!
Go Formative Assessments
Guided Notes
Class Discussion
Ed Puzzle Activities
Self-Assessments
Independent Practice
Homework
Exit Tickets

Unit Content:

Chapter Opener - National Geographic Explorer Video (1 Day)

Preparing for Chapter 10 Activity

- Prerequisite Knowledge Skills Review

10.1 Right Triangle Trigonometry (2-3 Days)

- Define the six trigonometric functions.
- Evaluate trigonometric functions.
- Use trigonometric functions to find the side lengths of right triangles.

10.2 Angles and Radian Measure (2-3 Days)

- Draw angles in standard position.
- Explain the meaning of radian measure.
- Convert between degrees and radians.

10.3 Trigonometric Functions of Any Angle (2-3 Days)

- Evaluate trigonometric functions given a point on an angle.
- Evaluate trigonometric functions using the unit circle.
- Find and use reference angles to evaluate trigonometric functions.
- Solve real-life problems involving projectiles.

Midchapter Quiz (1 day)

10. 4 Graphing Sine and Cosine Function (3 Days)

- Identify characteristics of sine and cosine functions.
- Graph transformations of sine and cosine functions.

10.5 Graphing Other Trigonometric Functions (2 Days)

- Identify characteristics of tangent, cotangent, secant, and cosecant functions.
- Graph tangent and cotangent functions.
- Graph secant and cosecant functions.

Midchapter Quiz 2 (1day)

10.7 Using Trigonometric Identities (3-4 days)

- Evaluate trigonometric functions using trigonometric identities.
- Simplify trigonometric expressions using trigonometric identities.
- Verify trigonometric identities.

10.8 Using Sum and Difference Formulas (2-3 days optional)

- Evaluate trigonometric expressions using sum and
difference formulas.
- Simplify trigonometric expressions using sum and difference formulas.
- Solve trigonometric equations using sum and difference formulas

Chapter Review (1 Day)
Test (1 Day)

Resources:

"Laurie's Notes" per chapter throughout TE
Everyday Connection Videos via QR-Codes
Dynamic Classroom with interactive content from Dynamic Student Edition for Explore It! And Performance Tasks
Dynamic Assessment System with digital assessment and reporting system with digital practice and assessments.

Unit Modifications for Special Population Students

Advanced Learners	- Invite students to explore different points of view on a topic of study and compare the two. - Assign a leadership role in classroom learning - Determine where student's interests lie and capitalize on their inquisitiveness. - Expose students to a selection and use of specialized resources
Struggling Learners	- Be flexible with time frames and deadlines - Create planned opportunities for interaction between individuals in the classroom: cooperative and collaborative learning, pair and share with peers - Group students - Intentional scheduling/grouping with student/teacher of alternative background - Provide support as at-risk students move through all levels of knowledge acquisition - Tap prior knowledge
English Language Learners	- Accommodate with completed study guides to assist with preparation on tests - Allow students to give responses in a form (oral or written) that's easier for him/her - Be flexible with time frames, deadlines, or modify assessments - Create planned opportunities for interaction between individuals in the classroom: skits, cooperative and collaborative learning, student generated stories based on personal experience - Establish a framework allowing ELL students to understand and assimilate new ideas and information - Focus on domain specific vocabulary and keywords - Give alternate or paper copies to accommodate electronic assignments. - Have another student share class notes with the ELL student. - Intentional scheduling/grouping with student/teacher of language if possible

	- Mark texts with a highlighter. - Take more time to complete a task, project, or test. - Use manipulatives, graphic organizer, and real objects when possible - Use visual presentations/verbal materials (ex: word webs and visual organizers).
Special Needs Learners	- Accommodate with completed study guides to assist with preparation on tests. - Allow more time to complete task, project, or test - Allow students to give responses in a form (oral or written) that's easier for him - Be flexible with time frames, deadlines, or modify assessments - Give alternate or paper copies to replace electronic assignments - Have another student share class notes with the special needs learner. - Higher level reasoning and questioning would have less weight than other assignments. - Receive study skill instructions. - Work with fewer items per page or line and/or materials in a larger print
Learners with a 504	Refer to page four in the Parent and Educator Resource Guide to Section $\underline{504}$ to assist in the development of appropriate plans.

Interdisciplinary Connections

Indicators:

ELA 9-12
RST.9-10.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
RST.9-10.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
RST.11-12.1. Accurately cite strong and thorough evidence from the text to support analysis of science and technical texts, attending to precise details for explanations or descriptions.
RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
RST.11-12.10. By the end of grade 12, read and comprehend science/technical texts in the grades 11-CCR text complexity band independently and proficiently.

Computer and Design Thinking

8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.
8.1.8.DA.5: Test, analyze, and refine computational models.

Technology Education

9.3.ST.1: Use technology to acquire, manipulate, analyze, and report data.
9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.
9.4.12.0.17: Employ critical thinking skills (e.g., analyze, synthesize, and evaluate) independently and in teams to solve problems and make decisions.

Life Literacies \& Key Skills

9.4.12.CI.2: Identify career pathways that highlight personal talents, skills, and abilities (e.g., 1.4.12prof.CR2b, 2.2.12.LF.8).
9.4.12.CT.2: Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a).
9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions (e.g., S-ID.B.6a., 8.1.12.DA.5, 7.1.IH.IPRET.8)

Integration of $21^{\text {st }}$ Century Skills

Indicators:
From the Partnership for 21st Century Skills (P21), the deeper learning competencies and skills for 21st century learning in this unit include collaboration, communication, and critical thinking.

Unit 9: Probability

Unit Description:

This chapter consists of independent probability and conditional probability, students will use them to interpret data, and use probability rules to find probabilities of compound events.

Unit Duration: 4 weeks

Desired Results

Standard(s):

A-APR.C Use polynomial identities to solve problems
S-CP.A Understand independence of conditional probability and use them to interpret data.
S-CP.B Use the rules of probability to compute probabilities of compound events in a uniform probability model.
S-IC Making inferences and justifying conclusions.
S-ID Interpreting categorical and quantitative data.

Indicators:

A-APR.C. 5 Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.
S-CP.A. 1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or", "and", "not")
S-CP.A. 2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent
S-CP.A. 3 Understand the conditional probability of A given B as $P(A$ and $B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
S-CP.A. 4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.
S-CP.A. 5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.
S-CP.B. 6 Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A and interpret the answer in terms of the model.
S-CP.B. 7 Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $P)$ and interpret the answer in terms of the model.
S-CP.B. 8 Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=P(A) P(B \mid A)=$ $\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and interpret the answer in terms of the model.
S-CP.B. 9 Use the permutations and combinations to compute probabilities of compound events and solve problems.
S.ID. 4 Use the mean and standard deviation of a data set to fit it to a normal distribution, estimate population percentages, and recognize that there are data sets for which such a procedure is not appropriate (use calculators, spreadsheets, and tables to estimate areas under the normal curve).
S.IC. 1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population
S.IC. 2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of

5 tails in a row cause you to question the model?
S.IC. 3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.
S.IC. 4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.
S.IC. 5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.
S.IC. 6 Evaluate reports based on data.

Understandings:

Students will understand that...

- Sample spaces have theoretical and experimental probability.
- Two-way tables can be used to find and interpret relative frequencies and conditional frequencies.
- Conditional relative frequencies can be used to find probabilities.
- Conditional probability can be used in decision making.
- Sample space can be used to determine if events are independent.
- Conditional probability can be used to determine if events are independent.
- The union of two events is the compound event.
- Overlapping events occur when events have one or more common events.
- Disjoint events have no common events.
- Real-life problems can be solved using more than one probability rule.
- Permutations and combinations have unique characteristics that are used to find the value of each numerically and with probability.
- Probability distribution can be constructed and interpreted to find outcomes.
- Binomial distribution can be used to find probabilities.

Assessment Evidence

Performance Tasks:

Mid-Chapter Quiz
Formative Checks
Homework
Practice Workbook
Test Prep Activities
Self-Assessments

Essential Questions:

- How can you list the possible outcomes in the sample space of an experiment?
- How can you determine whether two events are independent or dependent?
- How can you construct and interpret a two-way table?
- How can you use conditional probability in decision making?
- What is the difference between independent and dependent probability?
- How can you find probabilities of disjoint and overlapping events?
- How can a tree diagram help you visualize the number of ways in which two or more events can occur?
- What are the differences between permutations and combinations?
- How can you determine the frequency of each outcome of an event?

Benchmarks:

Chapter 8 Test
Performance Task: Buried Treasures

Learning Plan

Learning Activities:

*Daily lessons will include some or all learning activities
Daily Warm Up/Do Now
Explore It!
Go Formative Assessments
Guided Notes
Class Discussion
Ed Puzzle Activities
Self-Assessments
Independent Practice
Homework
Exit Tickets

Unit Content:

Chapter Opener - National Geographic Explorer Video (1 Day)
Preparing for Chapter 8 Activity

- Prerequisite Knowledge Skills Review
8.1 Sample Spaces and Probability (2 Days)
- List the possible outcomes in a sample space.
- Find theoretical probabilities.
- Find experimental probabilities.

8.2 Two-Way Tables and Probability (2-3 Days)

- Make two-way tables.
- Find and interpret relative frequencies and conditional relative frequencies.
- Use conditional relative frequencies to find probabilities.

8.3 Conditional Probability (2-3 Days)

- Explain the meaning of conditional probability.
- Find conditional probabilities.
- Make decisions using probabilities.

8.4 Independent and Dependent Events (2-3 Days)

- Explain how independent events and dependent events are different.
- Determine whether evens are independent.
- Find probabilities of independent and dependent events.

8.5 Probability of Disjoint and Overlapping Events (optional)

- Explain how disjoint events and overlapping events are different.
- Find probabilities of disjoint events.
- Find probabilities of overlapping events.
- Solve real-life problems using more than one probability rule.

8.6 Permutations and Combinations (2-3 days)

- Explain the difference between permutations and combinations.
- Find numbers of permutations and combinations.
- Find probabilities using permutations and combinations.
8.7 Binomial Distributions (optional)
- Explain the meaning of probability distribution.
- Construct and interpret probability distributions.
- Find probabilities using binomial distributions.

Chapter Review (1 Day)
Test (1 Day)

Resources:

"Laurie's Notes" per chapter throughout TE
Everyday Connection Videos via QR-Codes
Dynamic Classroom with interactive content from Dynamic Student Edition for Explore It! And Performance Tasks
Dynamic Assessment System with digital assessment and reporting system with digital practice and assessments.

Unit Modifications for Special Population Students

Advanced Learners

- Invite students to explore different points of view on a topic of study and compare the two.
- Assign a leadership role in classroom learning

	- Determine where student's interests lie and capitalize on their inquisitiveness. - Expose students to a selection and use of specialized resources
Struggling Learners	- Be flexible with time frames and deadlines - Create planned opportunities for interaction between individuals in the classroom: cooperative and collaborative learning, pair and share with peers - Group students - Intentional scheduling/grouping with student/teacher of alternative background - Provide support as at-risk students move through all levels of knowledge acquisition - Tap prior knowledge
English Language Learners	- Accommodate with completed study guides to assist with preparation on tests - Allow students to give responses in a form (oral or written) that's easier for him/her - Be flexible with time frames, deadlines, or modify assessments - Create planned opportunities for interaction between individuals in the classroom: skits, cooperative and collaborative learning, student generated stories based on personal experience - Establish a framework allowing ELL students to understand and assimilate new ideas and information - Focus on domain specific vocabulary and keywords - Give alternate or paper copies to accommodate electronic assignments. - Have another student share class notes with the ELL student. - Intentional scheduling/grouping with student/teacher of language if possible - Mark texts with a highlighter. - Take more time to complete a task, project, or test. - Use manipulatives, graphic organizer, and real objects when possible - Use visual presentations/verbal materials (ex: word webs and visual organizers).
Special Needs Learners	- Accommodate with completed study guides to assist with preparation on tests. - Allow more time to complete task, project, or test - Allow students to give responses in a form (oral or written) that's easier for him - Be flexible with time frames, deadlines, or modify assessments - Give alternate or paper copies to replace electronic assignments - Have another student share class notes with the special needs learner. - Higher level reasoning and questioning would have less weight than other assignments. - Receive study skill instructions. - Work with fewer items per page or line and/or materials in a larger print
Learners with a 504	Refer to page four in the Parent and Educator Resource Guide to Section 504 to assist in the development of appropriate plans.

Interdisciplinary Connections

Indicators:

ELA 9-12
RST.9-10.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
RST.9-10.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
RST.11-12.1. Accurately cite strong and thorough evidence from the text to support analysis of science and technical texts, attending to precise details for explanations or descriptions.
RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
RST.11-12.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
RST.11-12.10. By the end of grade 12, read and comprehend science/technical texts in the grades 11-CCR text complexity band independently and proficiently.

Computer and Design Thinking

8.1.8.DA.1: Organize and transform data collected using computational tools to make it usable for a specific purpose.
8.1.8.DA.5: Test, analyze, and refine computational models.

Technology Education

9.3.ST.1: Use technology to acquire, manipulate, analyze, and report data.
9.3.ST-SM.2: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.
9.4.12.0.17: Employ critical thinking skills (e.g., analyze, synthesize, and evaluate) independently and in teams to solve problems and make decisions.

Life Literacies \& Key Skills

9.4.12.CI.2: Identify career pathways that highlight personal talents, skills, and abilities (e.g., 1.4.12prof.CR2b, 2.2.12.LF.8).
9.4.12.CT.2: Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a).
9.4.12.IML.3: Analyze data using tools and models to make valid and reliable claims, or to determine optimal design solutions (e.g., S-ID.B.6a., 8.1.12.DA.5, 7.1.IH.IPRET.8)

Integration of $21^{\text {st }}$ Century Skills

Indicators:

From the Partnership for 21st Century Skills (P21), the deeper learning competencies and skills for 21st century learning in this unit include collaboration, creativity, and critical thinking.

